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Abstract—Lane-Keeping Assistance System (LKAS) is conve-
nient and widely available today, but also extremely security and
safety critical. In this work, we design and implement the first
systematic approach to attack real-world DNN-based LKASes.
We evaluate our approach on a state-of-the-art LKAS and our
preliminary results show that our attack can successfully cause
it to drive off lane boundaries within as short as 1.3 seconds.

I. INTRODUCTION

Lane-Keeping Assistance System (LKAS) is an Level-
2 driving automation technology that automatically steers a
vehicle to keep it within the current traffic lane. Due to its high
convenience for human drivers, today it is widely available
in a variety of vehicle models such as Honda Civic, Toyota
Prius, Nissan Cima, Volvo XC90, Mercedes-Benz C-class,
Audi A4, and Tesla Model S. While convenient, such function
is extremely security and safety critical: When LKAS starts
to make wrong steering decisions, an average driver reaction
time of 2.3 secondsmay not be enough to prevent the vehicle
from colliding into vehicles in adjacent lanes or in opposite
directions, or driving off road to hit road curbs or fall down
the highway cliff. Even with collision avoidance systems, it
cannot prevent the vehicle from hitting the curb, falling down
the highway cliff, or being hit by other vehicles that fail to
yield. Thus, it is urgent and highly necessary to understand
the security property of LKAS.

To achieve lane keeping, the most critical step in an LKAS
is lane detection, which by default uses camera due to the
nature of lane lines. So far, Deep Neural Network (DNN)
based detection achieve the state-of-the-art accuracy and is
adopted in the most performant LKASes today such as Tesla
Autopilot and OpenPilot [1]. Thus, the end-to-end security of
the latest LKAS technology highly depends on the security
of such DNN models. While recent works show that DNN
models are vulnerable to carefully crafted input perturbations,
their methods cannot be directly applied to attack DNN-based
LKASes due to 3 unique challenges. First, prior methods are
mostly designed for classification or object detection, and none
of their attack formulations can be directly applied for lane
detection. Second, to affect the camera input of a LKAS, the
perturbations need to be realizable in the physical world and
can normally appear on traffic lane regions. Moreover, such
perturbations must not affect the original human-perceived lane
information for stealthiness. Prior works have explored such
threats for traffic signs [2], but not for traffic lanes.

Third, to cause end-to-end impact to a LKAS, the attack
needs to affect a sufficient number of consecutive camera
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frames, and most importantly, the attacks on later frames are
dependent on those on earlier frames. For example, if the attack
successfully deviates the detected lane to the right in a frame,
the LKAS will control the vehicle heading accordingly, which
causes the following frames to capture road areas more to the
right and thus directly affect their attack generation. To the
best of our knowledge, no prior work considers attacking a
sequence of image frames with such strong inter dependencies.

The only prior effort that successfully attacked an LKAS
is from Tencent [3], where they fooled the Tesla DNN-based
LKAS to follow fake lane lines created by a line of big white
dots on road regions originally without lane lines. However, it
is neither attacking the scenarios where a LKAS is designed
for, i.e., roads with lane lines, nor generating the perturbations
systematically by addressing all the three challenges above.

To fill this critical research gap, in this work we design and
implement the first systematic approach to attack real-world
DNN-based LKASes. To practically introduce perturbations,
we identify road patches as the threat model, which is specific
to lane detection models and can normally appear in the
physical world. For stealthiness, we restrict the perturbations
to be within lane lines, and the color space to be on the
gray scale to pretend to be a benign but dirty road patch.
We then formulate the malicious road patch generation as an
optimization problem, and design a multi-frame path bending
objective function specifically for the lane detection task.
To address the challenge from the inter-dependencies among
attacks on consecutive camera frames, we design a novel car
motion model based input generation process and a gradient
aggregation technique. We evaluate our approach on a state-
of-the-art LKAS, OpenPilot, and our preliminary results show
that our attack can successfully deviate a LKAS to drive off
the lane boundaries within as short as 1.3 seconds, which is
far shorter than 2.3 seconds, the average driver reaction time.

II. THREAT MODEL AND PROBLEM FORMULATION

Threat model. We assume that the attacker can possess
the same LKAS as the one in the victim vehicles and has the
full knowledge of the LKAS via reverse engineering. Before
attacking, the attacker can also collect camera frames on the
target road by driving her own vehicle with the LKAS.

Realizable and stealthy physical-world perturbation
design. We identify malicious road patches as the attack vector,
since they are realizable in the physical world and can normally
appear around traffic lanes. For stealthiness, we restrict these
road patches to not cover the original lane lines and their color
to be on the gray scale to pretend to be benign but dirty.
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Fig. 1. Car motion model based camera input generation from the original
camera input. The red rectangle denotes the model input area.

Original camera input

Attack goal. By attacking the LKAS, we aim to cause the
victim car to have a lateral deviation large enough to drive
out of the current lane boundaries within the common driver
reaction time, which thus fundamentally breaks the design goal
of LKAS and can cause severe safety consequences. Assuming
the victim vehicle locates at the lane center before the attack,
the required deviation is 0.745 meters on the highway in the
USand the average driver reaction time is 2.3 seconds.

III. ATTACK METHODOLOGY

With the problem formulation above, we design the fol-
lowing novel techniques to address the challenges in §I.

Car motion model based input generation. To consider
the inter-dependencies among attacks on consecutive camera
frames, we need to dynamically update camera inputs ac-
cording to the driving trajectory changes during the patch
generation. To address this, we use a bicycle model to simulate
the changes to car trajectory, which is then used to update
camera inputs by applying perspective transformations to the
original non-attacked camera inputs. Fig. 1 shows an example
of this generation process. On the bird’s eye view (BEV), we
apply a car position shift and heading angle change from the
original car trajectory and then project the BEV image back
to the camera perspective. Although it causes some distortion
and partial missing area, the model input area, which locates
at the center, is still complete and usable.

Multi-frame path bending objective function. To gen-
erate the malicious road patch, we adopt an optimization-
based method, which has shown both high efficiency and
effectiveness in previous works. Since the lateral controller
of the LKAS is not differentiable, we introduce a surrogate
objective function to deviate the car as much as possible.
The lateral controller calculates a desired driving path based
on the detected lane lines, and numerically solves a steering
angle plan to enforce this path. The desired driving path
is typically represented by a polynomial function. Assuming
the car strictly follows the path, the derivatives of the path
are essentially the wheel angles it needs to apply. Thus, we
formulate our objective function:

T
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, where p;(z) is the desired driving path in the ¢-th frame,
X is the t-th generated camera inputs including the malicious
road patch, sg is the initial state and D is the set of the
points where the controller makes steering angle decisions,
A is a weight of the L2 regularization, and (2 is a function that
extracts the patch area in a camera input.

Gradient aggregation. Based on the objective function,
we obtain the gradients of each camera input. However,
the gradient descent is not directly applicable to update the
malicious road patch since the patch sizes and portions are
different in each camera input. To address this, we transform
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Fig. 2. Overview of the optimization pipeline of the malicious road patch.

TABLE 1. ATTACK EFFECTIVENESS WHEN THE DEVIATION GOAL IS
0.745 METERS (DRIVING OFF LANE BOUNDARIES ON THE HIGHWAY).

Scenario Avg. Speed Attack Time Patch Size (W x L)
comma2k19-1 126 km/h (78 mph) 09 s 3.6m X 36 m
comma2k19-2 105 km/h (65 mph) 1.0s 36m X 36 m

LGSVL-1 72 km/h (45 mph) 13s 3.6 m X 36 m

\ Drive out of lane boundaries after 0.9 sec ‘

Fig. 3. Malicious road patch and car trajectory for comma2k19-1.

all camera inputs to BEV to align gradients to the same scale
and take an weighted average as shown in Fig. 2.

IV. EARLY RESULTS

We evaluate our method on a state-of-the-art open-source
LKAS, OpenPilot [1], which is reported to have similar
performance as Tesla Autopilot and GM Super Cruise, and
better than all other manufacturers.We evaluate our method
on 3 scenarios and the results are summarized in Table I.
The comma2k19-1 and commaZ2k19-2 are real-world highway
scenarios selected from the comma2k19 dataset. The LGSVL-
1 is a simulated highway scenario created by LGSVL, an
industry-grade photo-realistic Autonomous Driving simulator.
As shown, our attack succeeds to cause the victim vehicle to
drive out of the highway lane boundaries (over 0.745 meters
deviations) within 1.3 seconds, which is much smaller than
the average driver reaction time (2.3 seconds). Fig. 3 shows
an example malicious road patch generated by our method.

V. CONCLUSION AND FUTURE PLANS

In this work, we design and implement the first system-
atic approach to attack real-world DNN-based LKASes. We
evaluate our approach on a state-of-the-art LKAS and our
preliminary results show that our attack can successfully cause
it to drive off lane boundaries within as short as 1.3 seconds. In
the future, we plan to (1) perform more comprehensive eval-
uation including more diverse scenarios, different car types,
other DNN lane detection models, (2) demonstrate the attack
in real-world experiments, and (3) design effective defenses.
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« Lane-Keeping Assistance System (LKAS)
> Automatically steers vehicle to keep it in lane
> Level-2 driving automation
» Widely available in a variety of vehicle models
* Honda Civic, Toyota Prius, Nissan Cima,
Volvo XC90, Audi A4, and Tesla Model S
* When LKAS fails to keep in lane:
> Avg. driver reaction time 2.3 s not enough for
» Drive off-road to hit road curbs or
fall down highway cliff
» Crash into other cars or be crashed into
* Our work:
* First systematic approach to LKAS
* Target most performant design today:
DNN-based LKAS
THREAT MODEL
» Attacker possesses the same LKAS as victim
» Has full knowledge of the LKAS
» Can collect road images before attack

ATTACK GOAL
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2.3 seconds (avg. driver reaction time)
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* Most prior attack targets obj. detection, not LKAS
* Need to be realizable & stealthy in physical world
» Attack to consecutive frames are inter-dependent
REALIZABLE & STEALTHY PHYSICAL-WORLD
PERTURBATION DESIGN
* New attack vector: malicious dirty road patch
> Realizable in the physical world
> Can normally appear around traffic lane
> Not cover the original lane lines
> Only use gray-scale color to pretend to be
benign but dirty
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ATTACK METHODOLOGY
« Car Motion Model based Input Generation

Our attack can cause vehicles
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* Multi-frame Path Bending Objective Function
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considering inter-dependency
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» Update malicious road path while keeping
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* TARGET LKAS: OpenPilot

Malicious road patch pretending to be benign but dirty

» Open source, on par w/ Tesla & GM Super Cruise
9 openpilot
Camera

Detected Desired

. DNN N
input s lanelines Lateral MPC | steering angle
»
. : controller ﬁ‘ o
RNN input

EARLY RESULTS

Car Motion Model based Input Generation .

Generated camera input
Rotated 5°to left Shifted 1m to right

Original camera input

Multi-frame Path Bending Objective Function
f( X1, Z > Vpi(d; {X;15 < t},50) + A|Qu(X0)[3

t=1deD
Gradient Aggregation

X, 50)
Obtain

gradients
of patch area

Convert

gradients

to BEV Gradient
. Aggregation

Apply
car motion based
input generation

Update patch

Current

& Takami Sato*, Junjie Shen*

Success criteria: car deviates 0.745 m within 2.3 s

Eval. Attack
Success| Patch Size
Scenario Speed X
Time

Nl B L) T WY e e
(78 mph)

105 km/h
(65 mph)
72 km/h
(45 mph)

comma2k19-2 10s 3.6m x 36m

LGSVL-1 13s 3.6mx36m

FUTURE PLANS

More comprehensive evaluation
Real-world experiment
Design effective defenses

, Ningfei Wang,

Yunhan Jack Jia, Xue Lin, Qi Alfred Chen
*Contributed equally

UC Irvine

ByteDance Northeastern

II 1l ?— T E_”!E’] University

¥ Take a picture to
download the
poster abstract




	Introduction
	Threat Model and Problem Formulation
	Attack Methodology
	Early Results
	Conclusion and Future Plans
	References

